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§ 1. THaE object of this paper is to explain a method of dealing with a class of results,
some of which are of frequent occurrence and some of considerable importance, in the
solution of LAPLAGES equation in series.

The fundamental theorem on which the method depends is expressed by the inte-
gration of

[[ersareras

over a sphere whose centre is the origin of coordinates and whose radius is R. This
sphere we shall call the sphere of reference.
By change of axes the above integral takes the form

QJWRJ’R ew«/(a’+B’+'y’)dw.
-R
and its value is
R +BI4y?) _ p—R/(a 462 +y2)
2R J@LET T )
or, in series,
2 B o pes R¥ 91 po ;
4nR 1+é—!(a—l-,3+'y)—|-...+2Z,+1!(a+,8+'y2)“+...}. )

It follows that if V be any function whose value may be expressed for all points
within the sphere by a convergent series, according to TAYLOR’s theorem, or by the
symbolical form
d

d, d
0@ —+y—+z.
€y ycly cleO

then the integral [[VdS taken over the surface of the sphere is
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The corresponding theorem in two dimensions, which we will also employ, is this :—
The integral

J’ eax+BZ/dS
taken round the periphery of a circle of reference, is
© R% )
277R§2%’! Z,!(oag-l-,Bg)Z IR (4)
Hence it follows that )
I Vds,
taken round the same periphery, is
© R /A2 d2\i
27R§ﬁﬁ<da)+;}:l/> VO . . . . . . . . . (5)

The theorems expressed by (3) and (5) are employed below in a variety of cases con-
nected with spherical harmonics. It is therefore necessary to specify at the outset
the notation to be used.

We denote, according to custom, the colatitude and longitude of a point referred to
the axes of reference by 6 and ¢ : cos @ and sin 0 by w and » respectively. We denote
the LEGENDRE'S coefficient or zonal harmonic of the ¢ degree by the symbol P; so
that P; is defined by the equation

. cdh L
2! P,'Z(—I)ZT’_H%; T (6)
According to CLERK MAXWELL’S theory of poles the general expression for the har-
monic of the +# degree is given by the equation
, A 1
. e zaz+1,____f___ _ :
0V Y= (—1)4 b Al (7)

d . . s . .
where - means differentiation with regard to an axis A.

In the harmonic (7) the i poles are the points where the ¢ axes of differentiation cut
the sphere of reference. In the harmonic (6) the ¢ poles all coincide with the point
where the axis of z cuts the sphere. If the ¢ poles coincide at any other point the
harmonic will be denoted by Q.

In the tesseral and sectorial system we have ventured to depart from the usual
notations by denoting them as follows :—

do d")di"’l

u@@;pﬂwﬁﬁ+%@ B

I @ deN\do 1
.u@ﬂzﬁnw%@iﬁg N )
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where j=1/—1, é=x-+jy, n=r—jy. It will be observed that (8) is not in accordance
with the general definition (7), for if we put o=0 we get (7, 0)=2P

As regards the name of Spherical Harmonic introduced by TaHomsoN and Tarr, it
seems desirable that the names of LEGENDRE and LApPLACE should be in some way
retained in connexion with the different kinds of harmonics with which they are asso-
ciated. From the point of view of the former writers there is perhaps some difficulty
in doing this. We shall however continue to give the name of LaAPLACE'S coefficient
to what Tmomson and TArr call the Biaxal Harmonic or the formula which expresses Q;
in terms of the harmonics referred to fixed axes of reference. With the definitions
given above, this is

220-1g! 4!

Q=P.P/+, &c., +_—7{(Z o), o)+ o[, o3+ . . (10)

i+aole

in which any accented function is derived from the corresponding unaccented function
by the substitution of the coordinates of the pole of Q; in place of the running co-
ordinates.

The following are, in the first instance, the integrals to which the method of this
paper will be applied :-—

(1) " j WP,dS

) .”j — )P, dS

(3) ff 1— p2)=P,, dS
(@ | fPPPds

©) [[@ 9@ B, atp)IS

[[@, alg, B[, at-BYS, &e.
© [[pppPas

Of these cases the first three require no special comment. The fourth case was for the
first time solved by Professor J. C. Apawms, in the Proceedings of the Royal Society,
vol. xxvii., pp. 63-71, although the result had been independently found and published
by Mr. FERRERS in his ‘ Treatise on Spherical Harmonics.’

Professor ADAMS, as well as Mr. Ferrers, made the discovery of the value of (4)
by an inductive process, and Mr. TopHUNTER showed in a subsequent number of the
Proceedings how the proof could be thrown into a compact form. The present
writer was, however, convinced that the integral could be found deductively according
to the method described above, and the simple character of the result led him to hope
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that the same method might be applied in cases of greater complexity. Accordingly
cases (5) and (6) have been dealt with, but they have not been solved with the com-
pleteness of case (4), the results being practically expressed in the form of series.

The most interesting as well as the most important applications of the present
method are connected with ellipsoids and ellipses. We have thereby obtained in
series of harmonics the potentials of

(1) An ellipsoidal shell.

(2) A solid ellipsoid.

(3) An elliptic plate of uniform density.

(4) An electric current in an elliptic circuit.

Of these cases (2) leads to the approximate determination of the forces expressing
the mutual action between two solid ellipsoids or uniformly magnetized ellipsoids, and
(4) in certain cases to the forces between two currents in elliptic circuits, the particular
case of circular circuits being completely determinate.

Similar results also hold for rectangular solids and circuits.

The case (2) derives additional interest from the fact that it engaged the attention
of LAGRANGE, who obtained the expansion as far as the first four terms. The same
four terms have also been worked out in a very interesting paper on the potential of
an ellipsoid at an external point, by Colonel A. R. CLarkE (‘ Philosophical Magazine,
1877, vol. ii., pp. 458-461).

In regard to case (3), Professor CavLEY, in the ¢ Proceedings of the Mathematical
Society’ for 1875, has obtained the solution in the form of an integral, from which he
derives interesting properties of the potential depending on certain particular positions
of the attracted point. The expansion in harmonic series would seem, however, to be
practically more useful in determining the mutual forces between two electrical circuits.

Throughout the following investigations, the method of treating Spherical Harmonics
introduced by TromsoN and Tarr will be almost exclusively adopted.

[[pop,ds

§ 2. Taking a point A on the axis of z produced negatively at a distance « from the
origin, let us consider the result of integrating

”é:cls, or Hz’”udS

over the surface of the sphere, where r is the distance of any point P from A, and u is

the reciprocal of 7. .
If we denote by the suffix 1 the fact of the operator being upon 2, and by the

suffix 2 of its being upon u, then the operator
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BB PN
(et
upon the product, 2”«, may be written,

AL AN
{clxg+dy2+<dz2+dzljj

that is, in virtue of u satisfying LAPLACE'S equation,

d? d d\i
(dzl + zdzl dz2>

Referring now to the general result (3), and picking out the general term, we find

A REF2 41 d2i—n g
7,

20411 nli—nl" dz,  d

In order that this may lead to a value not zero, we must have

A —n=m
or .
Q=m-+n
Substituting then this value of 4, and differentiating z*u, putting =, y, 2=0 after
the differentiations, we get

m+n,

4:,7rRm+n+2
n

(_ ) m+n+1! a1,

1
2"m n!(;m

But u can be expanded in a series of zonal harmonics, viz. : it is

1 R R
Pk (=P

a a

Substituting this expansion in [[#"udS, and equating the coefficients of the different
powers of the reciprocals of @ to the values already found for them, we obtain finally,
in the case where m and n are integers,

m-+n

!
2

Al

wP,dS=47R? (11)

m+n+1!7~n—;—n!

It is obvious from the above proof that m-n must be an even number, and that »
must not be greater than m. In all other cases in which m and n are integers, the

integral must be zero.
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It is obvious the same method of solution as the foregoing will apply generally
towards determining
2
r

where f(z) is any function whose differential coefficients are finite at the origin. In
fact, we find

e b [, R e Rt dnt
”f ()P dS=n(2R) +22n+11[07z+2(2n+3)42z2 3413 @t & "'&C]f (). (12)

where, after the differentiations are performed, z is to be put equal to zero.

A result practically equivalent to the above is given by HuiNg (¢ Kugelfunctionen,”
second edition, p. 76), and applied to various cases where the functions can be ex-
panded in simple series of zonal harmonics. The functions are

(L) =040, (1—=pf)’, sin™ , (1—p7)™

Similar functions are also to be found expanded in TopHUNTER’S “Functions of LAPLACE,
LaME, and Brssgr,” §§ 48, 145-147. We shall now discuss more general cases of some

of these functions.

[[(t=p2ypyas

§ 8. The case now indicated will be discussed only for integral values of m and =.
Let us consider the integral

(625, o ([ (@ +yruas

If we use the suffix 1 in any operator when it is upon (2?4-%?)", and 2 when it is
upon u, we have as the general term operating,

4R/ [ d d \? a d\ &\
T atas) ) i)
Ol d
i =6t in a5 i

d d ./d d d d
el
dy, dJe

4'71'R2““2 d d d d d? \¢
2@ +11 <4<gg+ d‘fg> <Cﬁl+dﬂ2> +5Z22>

or, since

dfl d771 dfz—d—"lz

the general term above is
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that is, in virtue of w satisfying LAPLACE’S equation,

2+11 dE. dm,

A Re+2 " < jl__ fl_ _d_ i d d >z’
ag dm, * dE, dn,  dE, dmy

The general term of the operator just found is

4 R2%+2 ; 21 da? % i d +i i)z—u
2i+11 - uli—ul d§1%1> (dfl g * A&, dm
Tt is obvious that 1—u must be even, otherwise the differentiated expressions could
not but vanish when =0, y=0, 2=0. We must thus have
1—u=2n
t+u=2m
Substituting these values in the general operator, and retaining only the middle term

of the last factor, which alone in that factor will produce a result differing from zero,
we get, as the expression of the effective operator,

4R+ ;  m+n! <d cl)m(d d )"

2m+2n+1! " m—n!n!n! &E;En_l @;03;7—2

of which the last factor may be replaced by
Ly
<—4 dz2>
And now performing the operations indicated, we find as the result

( )n 4 RY+2 pmtnlmim! 20l 1
2m+2n+1! m—nin!n! a¥t!

Since #?+4*=R? (1 —u?)=R%»? and the term involving P,, in the expansion of u in
zonal harmonics is
Ran

artl P

we have, finally,

— 2\ _ (=1)y4m  m+n!m!m! 2n!
”(1 #) Pznds—47TR22WL+2n+1! m—mn!nlnl oo (13)

If ¢ (%), any function of »? be expanded in the form
AgHApi+ .. A

then it may be shown that
MDCCCLXXIX. 3D
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ﬁﬁb (Vg) Py.dp

_ n_ﬂ___ (n+1)* (n+1)*(n+ 2)?
- (_ 1) 1.35... (4n+ 1)<A”+ dn+3 280+ (4n+3)(4n+5)1.2 22A”+1+&c'> ) (1 4)

In certain cases this series admits of summation. For example, let us examine under
what circumstances [[u™P,,dS admits of being evaluated

PP o Bl ot W

v
n!
Hence

k
5 —I-n
n+1

% k
W ol

n+1=—

A,

If we now write
k
o= '2* +’I’L
B= n-+41
3
y=2n —|-—2—
-we find for the integral [[u™"P,,dS, the expression

T+ 2D EAD) . .. (+20—2)
(=1) (2n+1)(2n+3)(dn+1) %

where

ala+1)BB+1)
y(y+1)1.2

_Try—B—a)*
T T(y—B)(y—2)

o (')
o]
(ny) - (o)

B 1~;—7” . <1§£+n>

* BrrTRAND, ¢ Calcul. Intégral,” 1870, pp. 495-6.

z_—_1+%3+ +...
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The value of the integral under discussion is accordingly

. k(k+2) ... (k+2n—2)
(=1 A=kKGB—=k ... 2n+1-k °~ = ° " (15)

and the above reasoning shows that & must be less than 1: it may, however, have any
negative. value.

[[(=p2yrpyas

§ 4. To evaluate the integral now indicated, m and = being integers, we must
modify our previous solution, for otherwise we should be led to infinite values of the
differential coefficients at the origin.

Let us consider the integral

[[(gnmivas

If V is a function which is symmetrical round the axis of z we may write this
ZWfpszdS

where ds is an element of arc of any section of the sphere of reference containing the
axis of 2, and p*+42*=R2

Now the expression (5) gives the form of solution in this case. If we put
L y 2,
V= (e cos vy
0
we have, in fact,

) 47 R? T/ 42 a2 \m+n . .
([a—mymPads =g o X[ S5 ) P (etp cos )

0

e

Expanding the quantities under the integral sign, and performing the differentia-
tions and integrations, we obtain

2m2R¥2m 1 2n!
28m+ 2 L lmin!

where
_nm+3) | ne—=1)(m+3)m+3+1) &

S=1-"9 + 13 1.2

_(n=m—H(n—m—%—1)... (—m—1+1)
- 1.2...2n
3 D2




388 MR. W. D. NIVEN ON CERTAIN DEFINITE INTEGRALS

First let 7n>m, then in S we have n—m positive and m negative factors, and in that

case S becomes
20— Zm")mY

2%, g\ 1)

(=1)"

Next, let n<m, then S becomes

( )n 2m\m—mn!
2222 —2n!m!n!

Substituting these values of S in the expression for the integral we find
(1) if n>m
(=127 R*2m! 20! 2n! 20 —2m!
2ty Ll p—m! m!m!nlnt © 77T (16)

(2) If n<m
(—1)"2m*R*?2m! 2m! 2n! m—n! 1
2t 4l 2m—2n!t mtminlat™ C T T T (17)

[f Qi‘fi—fds, It Qi"%?ds

§ 5. The results for the two integrals now stated are, if a be the colatitude of the
pole of Q;,
47R*Pi(coser) . . . . . . . . . . (18)

2aR%(j—0)(j+i4+1)Pi(cose) . . . . . . . . (19)

where, in the second integral, j—¢ must be a positive even integer.

GENERAL THEOREMS IN DIFFERENTIATION.

§ 6. Before we proceed with the remaining cases, it will be convenient to state and
prove various theorems in differentiation.™

Theorem i. The general operator (7) upon the reciprocal of » may be made to
operate, instead, upon a homogeneous function in a, v, z of the ¢ degree; this
effect being expressed by the relation

@ 11
("1)017@1017@2...%2 Fdhdk ). o (20)

where the pole of Q; is in the direction of 7.

* Theorems i. and ii. were given in a paper by the author in the ¢Messenger of Mathematics,” No. 73,
1877. On account of the brevity of the proofs, and in order to secure completeness, it is thought best to
reproduce them here.
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Theorem ii. relates to the differentiation of the reciprocal of 7%*! and may be
stated thus:

. di——o- 1 2051 di-o ) dﬂ_Qi
—1)= froemerd - | g . .
(=1) diydhy . . . dhi_y 7% 2g1 dhldlzg...dhi_,,(T dw’> . (21)
da d d .
Theorem iii. If f i dy & be any homogeneous operator of the * degree

operating on a homogeneous expression ¢ (, ¥, z) of the ¢ degree, then

e VA R B )

This theorem is obviously true, and though stated for only three quantities, «, v, 2,
is true for any number.

Theorems i. and ii. are proved as follows: Let OP=r, QP=p and O?Q:w—ﬂ,
where Q is any point near to P. Then

1 . pt
OQ————Ql oo +(—1)ZT£-1QZ'+&C'

Keeping r fixed let us perform the operation (7) on the two sides of this equation
and then put p=0, in which case OQ becomes ». It is to be observed that with a
homogeneous operator like (7), it is immaterial what point is taken for origin of
coordinates. If then we take P for origin when we are dealing with the right hand
side of the above expansion, we see that the first ¢ terms will disappear by repeated
differentiations, and the terms beyond the 141" disappear in consequence of the
zero value of p. The theorem stated therefore follows, the substitution of = for p
making no difference in a result from which w, y, z are finally made to disappear.

Theorem ii. may be proved in the same way, if instead of the expansion for the
reciprocal of OQ, as above, we take the expansion for the reciprocal OQ**1, found by
differentiating the above series o times with regard to p.

DIFFERENT FORMS OF TESSERAL AND SECTORIAL HARMONICS.

§ 7. In several of the following investigations frequent use will be made of different
forms of the zonal and tesseral harmonics. With the view of classifying these various
forms, and of bringing the various expressions for the tesseral and sectorial system
into harmony with the corresponding expressions for the zonal, a proof is here given
which will be a direct illustration of the foregoing theorems.

The most important forms of the zonal harmonic P; are

2%,@(;/«—) e e (A
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20 .1
(i 2& D=y ) . ... ... @®
i A
J (ngv cos Yy, f sy ()
;Li—i(i;'l)w'"zvz—l--. N € 0)

Now by definition

. 77,+]. Zt o du’ du‘ 1
6 )==0" F e

di—e 1

) 20
:_(__1)1-%0-22%1 Az-l-l(£¢r4_,),] )dz ?27+1

By Theorem ii. this is

1 di=e/ .
g el
-2 cos oy 7 <’r

4Q,
207!

d,u,“'
‘We observe that, in this result, the axis of the harmonic Q, is the line OP, as explained

in the proof of Theorem i. We must therefore change the axes of coordinates,
making the new axis of z coincide with OP.

. d°P
—0a
If » y

~, when expanded, becomes
i

A — B2

we have to consider the effect of operating upon this with

il d i—a
COS Of-dz Sln (Xdp

There will result

t—o ! (Acos™ a—DBcos™? asin’ a4 . . .)
that is
d°p;
t—a!
dpe

where p is now the cosine of the angle between OP and the axis of z  Hence we
obtain the first and second forms of the harmonic corresponding to the forms (A)and (B)
of the zonal harmonic, viz. :—

(& 0)—

(@)

2 4!

(t—o)(i—o—1)
2z+a— 14 al

2 cos o’ ( i 5(2i=1)

Hf~v-2-+...> )

Tet us now consider the definite integral
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T

7 de m 1
jp0032¢+931n2¢ 2\/102 e e e e e e e (a)

This result will still be true if for p, ¢ we substitute the unreal quantities c+47re%,
c+7e7Y, as may indeed be shown by direct integration.

Let us differentiate both sides of the equation (@), o times with regard to p and o
times with regard to ¢. We find

9 ,F $in® ¢ cos™ ¢ 13...Q20—112 1
g. 0 (29 cos? ¢+q sin? )20-+1 ¢ Qe (pg o+

Making the above substitutions for p, ¢ we get

200! gjf sin® 2¢ dq.')— 1 217_;1
1.3...20—1 7)o {c+7(e% cos® p+e7% sin® ) }2e+17 7 \ 2+ 2erp+ 72

1 Lo

=mm @y et HEE) T )

g

the last line being derived from its predecessor by o differentiations with regard to u.
And now expanding the expression under the integral sign in powers of », and

equating the coefficients of 7/~°, we find

EZZE_ 140! o!
due™ 20! i—a!

o 2(% (5 o ~0 in? b)i—7 gin2e
2 W_L (¢¥ cos® p+e™Y sin® )7~ sin® 2¢d

On putting 2¢=1y, and substituting the expression just found in equation (a), we
finally obtain for (7, o) one of the forms corresponding to C, viz. :—

i+olo!

STl 2 cos o’ j (ptjvecos)~sin®* Yy . . . . . . (o)

There is obviously another expression, corresponding to the second form of C, which
is easily written. It is to be found by expanding, as above, in powers of the reciprocal
of r.

The expansion of the binomial inside of the integral (c) and subsequent integration
with regard to ¥ give the form corresponding to D, viz. :—

i+a! e (1—0)(i—a—1) o=,
il o ZCOScrdw{ S TRy v—l—...} B ()
Integration of the Product of Two Harmowics and Proof of LAPLACE'S Coefficient.

§ 8. Let us take two points A and B at distances ¢ and b from the origin, A being
on the axis of z and B at an angular distance « from it.
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Let P be any point on the sphere of reference, and let us consider the integral

[
APBP

By (3) we may write as the result of this

© R 2 B2\ 1
) el T
4rR 2"2'&4— 1 ‘(dx+cly+dz> AO0.BO

If we use the suffix 1 to denote differentiation upon AP only and 2 upon BP only,
the above becomes by virtue of LAPLACE’S equation

9
47 R %2 +1‘

2 Rﬁl d d  dd  dd\ 1
A0.BO

d"”“’l dy dyl d?/z ﬁ% ;Z;;

or, what is the same thing,

2
4k %2 +11

(Odd i d dl)il

“dg, d”]2+2z’z?2 ‘—Z’7—1 ZZZ; dz,) AO.BO

Now on consideration of Theorem i. we will see that in expanding the operator just
found, the only terms which will lead to results not zero will be those which, so far as
the operator with suffix 1 is concerned, are of the form

dm dm e

d§, dmy dz
and this by virtue of LAPLACE’S operator

dzl dé 1 d’h

is expressible in terms of = only. Hence we conclude that the only effective terms

may be found directly as those not containing a power of v in the expansion of

B 1d _d d\ 1
P2 2_____ ha SRR I
4nR ?2 +1'< dz, 0 dzy | dy d%) AOBO
e, in
@ R/ d 14\ 1
PANY S BV e
RE(=1) 2¢+11<”dzl zzclz2> A0BO
1.€.,
RS % 4 41
2 i
AR 3 il de @ AOBO
Hence

ds g B P;(cosa)
f 5 appp= Ry T
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If now we expand the reciprocals of AP and BP in harmonics we arrive at the
well-known theorems

[[PQas=o

4R
”PiQidS=Z%IPZ-(cosa) (23

The last result, when properly considered, can be made to yield the integral of any
two harmonics. For it can be easily seen from the foregoing work that if p,, p, are
any two vectors drawn from the origin, then we have this very remarkable formula

for Q,;
. X el A d d d d d\ 1
R o i+l etlod oy 7 IR I
2 Q=pi et <dx1 d‘”2+d?/1 d@/z_l_dzl dz) P1Ps
On account of the operator being an invariant we may suppose the axes to be any
rectangular axes whatever.

By what has just been shown we may throw this into the form

. ' /d 1 d\¥1
. ity 11V e
2! Q; P1 P2 ( 1) <fuolz1 v dz) P1P2

where 9? stands for

The general term of the value of 2¢! Q; just found is

pp (= 1)r2it e e A ]

i—alita! o dy  dz  pip;

ne.,
p1i+1P2i+l(_1)0'27:! _(ii(ilj Ed_i—o’ tﬁa’ 1

t—oli+o!  dy dn, dzy dzy, pip,

or
i 2t g, e de 4w 07w 1
i—clital” dn dE, dz dm  pipy

It is obvious a term similar to this can be obtained with only ¢ put for &, and =, for
71, by merely changing the sign of o in the first of the last three expressions. Adding
the two terms and recollecting the definitions of the harmonics we may write the result

21614 o i e s b e
m 27 1{(’0, 0')(Z, (I) —H:Z, 0']‘_’1/, 0'] } soe e e e (24)

Hence Larrace’s Coefficient as given in § 1.

Reverting now to equation (23), let us take two fixed poles, and let Q; Q/ be
expanded according to Laprace’s Formula; we shall then be at once led to the well-
known surface integrals of two tesseral harmonics.

MDCCCLXXIX, 3 E
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The discussion entered into in this article is necessary for the treatment of the
product of three harmonics to which we now proceed.
It may be remarked that the expansion of the operator

A dydd 4 dyi
dzy day  dyy dyy © dzy dzy) pipy

is, according to the above investigation,

L2 & & ooy 200 de dr | do de ii)i-” 1
{2 datdn it T merima\ag g Tag i\ a) T o,

(See also THoMsoN and Tarr, p. 157).

Gleneral, Method of Dealing with the Integral [[Q,QQ. . . . dS.

§ 9. In discussing the general method of evaluating this integral it will be con-
venient to confine ourselves to the case of three harmonics, though the first steps of
the reasoning will apply to any number.

Let A, B, C be any three points whose distances from the origin are @, b, ¢, and let
P be any point on the sphere of reference. Then by §1
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where v,, stands for

dd dd dd
dry dug * dy, dy, * dzy dzy’ O
the suffixes having the same signification as in the previous article.

The general term of 2i+2 dimensions in R may therefore be written
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Now the general expansion of each of the operators in this expression was found in
the previous article.

If therefore we adopt a somewhat more convenient notation we may expand v,
vy, Vo 10 a series of terms of which the type is
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22(l+m+n)—i 2! 2/1,! 2v!
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where the values of /, m, n range between 0 and \, u, ».

The general operator just found we shall denote by the symbol = (I, m, n).

§ 10. If we expand each of the reciprocals of AP, BP, CP in harmonics we shall
arrive at the general term of 2042 dimensions in R in a different form, viz. : it will be

e [QQQds

In order therefore that the general term as found by the work of the last article
may correspond with this we must have

ptv=p
v+A=q
)\+M=7.

The quantities A, u, », as depending upon p, g, 7, are therefore perfectly determinate,
and the equation expressing the identity of the general terms may by Theorem i. be
‘written

47R . 4
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/bl =223 (l, m, )(Qure Qi Qery) . . . . (25)
On examining the equations determining A, u, », we see that in order to their being
positive, p4 g7 must be an even number, and no one of the three quantities p, g, »,
must be greater than the sum of the other two.
If these conditions are not satisfied, then [[Q,Q,Q,dS=0 for integral values of p, g, r,
wherever the poles of the harmonics may be.

([Bp,pds

§ 11. Let us now suppose that the three points A, B, C are in the axis of z. Then
the harmonic Q, becomes P,, which we will suppose expressed by the series D. In like
manner P, and P, may be similarly expressed. It follows that, in selecting from the
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general operator what terms are practically effective, and discarding those which are
not, we need retain only such terms as are, for example, of the form

ar g @
dg dn, dz

Now the terms of this form are obviously got by putting l=m=mn, =o say. In that
case, when we omit inoperative terms, = becomes

2N 2! 2p!
Aol hv—cl ptol p—clv+olv—o!
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that is, in virtue of LAPLACE’S equation being satisfied,

1 o2 2n! 2up! 20! ar di @
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Taking all possible terms of a, such as that just found, and performing the operation
directed by them, we have for [[P,P,P,dS, the expression

47R? 2N 2u! 20141/ plglor!
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where o ranges from 0 to the smallest of the quantities A, p, ».
Now the series within brackets is clearly the coeficient of a®, y*, 2, or of a**’,

v+A A+ 3
Y, 2N, In

(=D)ly—2)* —a) @—y)*™
or, again, the same series is also obviously equal to

plglr!
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where K is the coefficient of a*** 4™ 2*** in

(=1)y=2)™ (e—a)* (—y)*

that is, in
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If we now write herein
z=e™ =1ye'Y
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we see that K is the term not involving the cosine of an angle of the value m@-+4nd¢ in
the expansion in such cosines of W, where

W=(—1)" 2% gin?0 sin*¢ sin®(0—¢)
o0 that

=L j [ Wdod

71-2

Now expanding sin*(#—d) in powers of sines and cosines by the binomial theorem,
we observe that the odd terms in the expansion disappear on integration, so that the
value of K is given by

1 v! . .
E;EJ J’o( 1)i 22Zm sin® 24 cog® %0 sin® ¥~ cos™p d0 dd

On integration and reduction this becomes
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This hypergeometric series is capable of summation by a method similar to that
given by BERTRAND, ¢ Calcul. Intégral, 1870, pp. 495-496. If we put
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On substituting this value for S in the value of K we find

120! 2! 2v!
K=(_1)zlw__fﬁ_1
plgtr! A p!ly!

Finally, performing the operations with regard to the z’s, we find

47 R? 4l 2N 2u! 20! 06
bitli 2 Mnptasie 0 (26)

[[®p,pds=

This agrees with the result obtained by Professor ApAwms.

§ 12. Before leaving this case we may remark that, so far as the foregoing proof is
concerned, the poles of all the three harmonics are not necessarily coincident. The
proof will hold when two are coincident and the third is at an angular distance, say o,
from them. In those circumstances the value of [[P,P,Q,dS will be the result found
above multiplied by P,(cos ). The same is, of course, true of the integral [[Q,Q,P.dS,
provided the two Q’s have the same poles. Now let Q,, Q, be each expanded accord-
ing to Laprace’s Formula, Then we will have the curious resuit that any zonal
harmonic of degree  can be expanded in products of harmonics, zonal and tesseral, of
degrees p and ¢, the quantities p, ¢, r being, of course, subject to the foregoing
restrictions. If ¢ is less than p the number of terms in such expansion will be 2¢-+1

(2 @)@, B atBs

§ 138. Reverting to the general expression for the operator # (I, m, n) given in § 8,
let us leave out for an instant the numerical multipliers and the operators with regard
to the #’s and let us multiply out those with regard to ¢ and v, Let us suppose [, m, n
in descending order of magnitude, and for the sake of brevity, instead of writing the

differential operators, let us write only the characteristic letter, e.g., instead of ZZ%
write §&. We find
T S B e (Rl Kt s R S )
FEmETE Ay e
__l_.5271,7)2%(El7n+ﬂé‘.‘21“/ln31*“nt + 771772+nn2l'“1z§_'3l+m)
_+_ Esm,,]gm ( Elm+nn2/ +a 631“‘712 + 7 m+n 521 +ﬂ7]31~“m)

. d A ,
Now since any product such as .~ -~ can be replaced by — -, we see that each of
dag, dm I

the lines just written corresponds to the sum of tesseral harmonics, in such manner
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that if we suppose the differentiations performed by the whole of the operator, and if
one of the resulting terms is

L
i (25 @)l B)ulrs )

where the suffixes indicate that the angular coordinates of A, B, C are substituted
in the harmonics to which they are respectively attached, then we have in all cases one
of the quantities &, B, y equal to the sum of the other two. This we see from the
expanded form of the operator just given, and it is a result which was to be expected,
for supposing Q,, Q,, Q, severally expanded according to LAapLAcE'S Formula we should
have in the surface integral a series of terms of which the type involves the integral

{:ﬂ cos ag cos B¢ cos ypdp

and this integral vanishes unless the above conditions be complied with, the case where
a~+B~+y=0 being of course out of the reckoning.
In accordance with the explanation just given we may now put

m—n=o or m—l—n:a‘}
l+n=B l—n:B{- N 14

and .. [4+m=a-4 J

If then we substitute in 7 ([, m, n) for [ and m the values B4n and a—n, we see that
n may range in numerical value between 0 and the least of the integers A—B, u— e, v,
and may be positive or negative. The operator , in fact, becomes

(_]>¢L22(a+ﬂ)—-i 2N 2! 2v!
AMB+nlv—B—ntpta—n!l p—atnlvtnlv—nl
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We have therefore now to consider a series in which any term is the product of (1)
an invariable power of 2, (2) an invariable operator, (3) a variable coefficient whose

parameter is 7. If we denote the first two of these factors by the symbol =, then the
sum of all such terms is wK, where

_ 2N 2u! 20! .
—/L+V—a!1/+7\,——,8!>\.—|—;;-|—a+lB!W oo (28)

and W is the coefficient of #™y*#* in
(_.l)i(y_z)u'i-v—a(z_m)u+t\—,”(w_y),\+u+,,+3
that is, in ) ,
(— 1) (y=2)r=(z— )P () + P
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The expression upon which the operator = has to operate may be found by expressing
Q,, &c., by Larrace’s Formula, and using the series D: it is as follows :—

{E ) (P Wa—g (G =) P, @) 3z

a’ p— al
512 ; Y (&P (¢, B i—j (&L —nP) g, Btz
X g (6T n ), aokB)e—j (62— )7, ok B3

If we omit irrelevant terms this becomes

27%pl gl 7!
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The result of the operation is accordingly

22e0=i=2p1 gl ! K{(p, &)u(q, B)s(ra+B).—&e. . ..}

Turning now to the integral [[Q,Q,Q,dS, let us expand each of the Q’s according to
Larrace’s Formula. We thus find for the general term

2HetB=Bp ! pl gl gl vl 7!
ptalp—al g+Bl¢g—Bl r+a+Blr—a—p!
x([1(p, ulp, ) +[p, <} [ps a1 (g, Brlg> B+ Bl BHL(, atBulr, a+B)
+[r, atBL[r, atB]}dS

Now, by the formula of § 10, when we come to equate the two results just found, we
shall get

' 4w R? 0l 21 2u! 20!
”(p’ )¢ B)(r, a+B)dS = 2;;11 : mmﬂu: -

2281yl gl 2!
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or finally

__AarR? 41 O\ 2! 2p! p+a'q+,8f7-a-——/8'

([ @@ B0, atBas=2T Dlpteldth W. . (29)

where W is defined above (28) as the coefficient of a term in a certain product, or
as a series whose terms depend upon a single parameter.
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If we denote by U the value of the expression on the right hand of the equation
just found, we have further

[ 0@ B, atBIIS=0

ﬂ(zo, %)q, B[, 4+/3]d3= —~U
&e.

[[p,ppPas

§ 14. We may remark in regard to the case which we have now to examine, that
since P,P, may by the foregoing results be expanded in a series of the form

AOPT-S+A1P7'—8+2+ L +AmPr-—s+2m+ L +A5Pr+.9
where the value of A,, determined by (26) is

2r—2s+4m+1 r+m! r+m! 2m! 2r—2s+2m! 28—2m!
2r42m+1  2042m!m! m! r—s+m! r—s+m! s—m! s—m!

the above integral is reducible to the computation of a series of s terms of the form
Au[[PPP. S
The last integral is to be found by writing in (26)

A=—p+q+r—s+2m
2u=p—q-+r—s-+2m
v=p—4-q—r-4s—2m

We are thus led to a complete though practically laborious evaluation of [jP,P,P.P.dS.
It will be observed that the result is zero unless p-+q-+7-4s be an even number.

With the view of finding out how far the method of this paper is applicable in this
case, and what difficulties stand in the way of its general application, we will now
briefly apply it. It will be convenient to expand the operator in a somewhat different
manner to that pursued in the case of the product of three harmonics. The operator
was then expanded in a form which would render it useful for application in the case
of the tesseral and sectorial system, If, however, the poles of the harmonic are all in
the axis of z, a much simpler mode of expansion may be adopted.

When the product of four harmonics is under consideration we have to discuss an
operator of the form

MDCCCLXXIX. 3 r
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d d d d \? d \? d d d d\2]¢
{ <dx1+ d9”2+553+ dx) T <d?/1+d?/2+d?/3+dJ4> T (d—zl +dzg+dzs+dz4> }

or, what is the same thing,

d d  d  d\? d\¢
{<d21+dz2+dzg+olz4) +4<dfl+d§2+df3+d§4><d”’h+d’72+d77%+d’74>}
If this operate upon the reciprocal of p,p,psp,, Where these distances are measured

from four points A, B, C, D on the axis of z, we have four relations of the form

PP
a4 aean=

Further, on picking out the general term, we observe that, to be effectually
operative, it must consist of products of the form

dl dm dm

dz d§ dn
and this form of operator may, by the foregoing relation, be expressed in terms of
d
c—l—z~only.

It is obvious, however, that the sum of the terms so modified can be found directly
from the part of the expansion not containing %’s of

b ) = bbb o et e )

or, what is the same thing, from the part of the expansion not containing %’s of

d, d d 4 1d,1d,1d,14d
i) =i, o g et et et )|

that is, of |
(—1)2{< Z—i— /\/ > c—Z%ldd +5 similar te1ms}{

If we expand this the general term will be

()t X () O — ) (O — ) () R R

Mupl vl m! nl

(L V(L 1 a1 dys
ky dz) \ky dz, Kks dry) \lky dz,

where
ptv +1 = jl
v+N+m=q
Ap 0 =r r (850

[ +m+4n=s |
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The quantities N, u, v, I, m, n are therefore indeterminate, and there will be a series
of terms having the required indices.

The coefficient of the operator given above may be put into another form. Let us
consider the expansion of

{ally—Fg) 4D (kg — k) by — k) - (b — k) +e(by— ko) 1 (by—g) 1%

first in powers of «a, b, ¢, . . . and then in powers of k, ky, &y, . . .  We then see that
the coefficient of k2 kyf k" &, in (ky—kq)™ . . . (k,—k3)*" is equal to

20 2! 20! 20! 2m! 2n!
plqlrls!

where W is the coefficient of a® b™ ¢* d¥ ¢ f* in

(—b4c—d)y(—ct+a—e)(—a+tb—F)(d+e+f)*

w

We have, finally,

i4'n'R2'L'l 2N 2p! 20! 201 2m)! 2n!
20+1! Mptvlllm!nl

[[p,PPPds=(~1)

where 3 denotes the sum of all such values of W multiplied by their respective

coefficients corresponding to values of \, p, », [, m, n determined by equations (30).
This investigation serves to exhibit the peculiar practical difficulties which beset the

problem of integrating products of harmonics over the sphere of reference, if more than
three harmonics be considered.

POTENTIALS OF ELLIPSOIDS.

§ 15. Let p be the perpendicular upon the tangent plane at any point of an
ellipsoid, and let us consider the integral ’

taken over the surface.
By the theory of corresponding points this integral may clearly be thrown into the
form of an integral taken over the surface of a sphere of radius R, viz. : it is

abe [ oo +0BY +oyd |
wlle w A

the value of which, by what we have already shown in (8) is

ev _.e_v

2mrabe

where
V= a2+ 5230 .
3 F 2
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Now let V be any function of x, ¥, 2, which can be expanded by Tavror’s Theorem ;
then

[[vpas
taken over the surface of the ellipsoid is

2mabe Vv

or, in series,

4mbc<1+—§+ AR AT .>V

2¢+1!
where .
d? d (
a__ 2% 130 4
vi=a dx+b day? C &’

and after the differentiations are performed, x, v, z are to be put equal to zero.

§ 16. If V satisfies LAPLACE’S equation, then the operator v* will remain unaltered
if for o?, b, ¢* we substitute a®+¢, b>+-¢, c?4-e It follows, therefore, that the average
value of V over any ellipsoid as measured by

IS

volume of ellipsoid

(31)

is the same for that ellipsoid as for any ellipsoid confocal with it.

This theorem,* which may be regarded as the anologue for ellipsoids of the corres-
ponding theorem given by Gauss for spheres, is due to Professor CaHARLES NIVEN, who
also showed that, if V be due to attracting matter E inside the surface of the ellipsoid,
then the expression (31) becomes

E J’ “ dr
20V (@A) O+ ) (@ +)
§ 17. As a particular case, let V=Qi]? where Q is any point outside of the ellipsoid.
Then
f jﬁ_d?
QP

is the potential at Q due to matter of density p coated over the ellipsoid. The
quantity of matter is 4wabc and the potential due to it at Q, according to a well
known result is

2mabe J’ ) G
N EENCRE )
or
2wabeo

where o is the ellipsoidal coordinate of Q.

% Mathematical Tripos Solutions for 1878.
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If P’ be any point inside the ellipsoid we then have ultimately when P’ coincides
with the origin

But, if f, g, & be the coordinates of Q,
QP?=(f=a)*+(g—y)*+ (h—2)*

Hence
a1 __d 1
de QP df QP

@11
dz QP arQr °°

We may therefore take v ? to stand for

a? a? a?
2 4 pe 2
@ df+b dg+6 dh

and in that case we may put «, y, 2 zero before differentiating. If then OQ be
denoted by r, we have

eV—e V1
a=—"—— (32)
or, in series,
2<1+1v2+ o v )1 (33)
31 e T e e e

If we multiply a by 2mpabcéf we have the potential of an infinitely thin shell
bounded by two similar and similarly situated ellipsoids. When a shell is hereafter
referred to, this kind of shell will be meant, unless otherwise specified.

§ 18. Since the whole ellipsoid may be divided up into shells, the potential of the

ellipsoid at Q is
pdSdo

where p is the density at any point in the shell whose semi-axes are a6, b6, cf. It

will be observed that, since p86=65p, P 8280 is an element of volume, so that (34) may

be written

( J’ f pdadydz
Qr

If we take the series (33) we find for the potential of the ellipsoid at Q the series

9

0~1,

2041!

1 2
| 4wpabcaz<1+g—,v2+...+ v%+&c.>1de. L (35)
0 \ ! r
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This can be integrated if p be a function of 6.
In the particular case where p is constant and the mass is denoted by M, we find

31 s 5 v* L
M<1+53!V +o +2¢+32¢+1z+°")7~' L. .. (36)
§ 19. The result just formed exhibits in a very simple manner MACLAURIN’S
Theorem, that the attractions of confocal ellipsoids at external points are proportional
to their masses. IFor, as has been already pointed out, the operator v? is unaltered

by the addition of F (% T dg+dh>

The series (35) also shows in what direction MAcLAURIN'S Theorem may be
generalised.

(i.) Let p=f(f). We then see that if there be two ellipsoids which would be
confocal if they were coaxal, and if the matter in them were arranged in layers
similar to their bounding surfaces according to any specified law depending on the
parameter of the layer, then the attraction of such ellipsoids at external points whose
coordinates referred to the axes of the ellipsoids are equal, are proportional to the
masses of the ellipsoids.

(ii.) If we multiply the value of « given in (33) by

2/ (P =) (V' =) (P =) F($)db

and integrate between the values ¢, and ¢, we find on the right hand side

tof, VE=HE=HE=HFGIX (T 4T ) 6D

r
)

in which the operator is independent of ¢.
On the left hand side we have

[[2m/ (= )= )= BF ()
_ L IR WS,

o[

where p is the perpendicular from the centre on the tangent plane at the point x, ¥, 2
to the confocal, passing through the point of parameter ¢.

Hence, if the matter between two confocal ellipsoids be affected with a density
varying as F(¢)p?, the equipotential surfaces will be confocal ellipsoids, as may be seen
from the expression (37), which also gives the ratios of the attractions due to different
shells.

(iii.) The theorem is true for any value of V satisfying LaPLACE’s equation.



OCCURRING IN SPHERICAL HARMONIC ANALYSIS. 407

a? . .
§ 20. If we put a=0 then v ? becomes —(.rnz—c%);l;, and the potential of a solid

ellipsoid of revolution of uniform density becomes

M 3Py a?—c* | 8P, [a’—c*\? 3P [a?—c*\3
T O L IO

§ 21. The expansion involving surface spherical harmonics of the potential of a solid
ellipsoid of uniform density is easily derived from (36).
In virtue of LAPLACE’s equation, the operator Vv ? becomes

I e

dz
which we will abbreviate to

Now by Theorem i.
d il d2 de i 22
<f - dz> r ( ) 2L+l<g CE) r szz

Since there is here no operator in regard to y we may put y=0 in the expression
for Q1% before differentiating. In that case f—n x, and the expansion will take a
comparatively simple form,

We take, according to custom, the axis of z for the axes of the zonal and tesseral-
sectorial system. The expansion of Q7% then becomes, by Larrace’s Formula

- 200-1 241 241 . viros
P2i7"2P2i+ R 2’,7_’_20_! 2Zj2*o_j (22, 20’)”)‘2 (22, 20’)+ e
.2 2 1
=P’2,.<z2z 2020 1) pimgpp > +. 4
2i—20)(2i —20 —1) ..
=20 20_( 2%—20—220+2
T 20')< z o . +...>+ &e.

The general term of the expansion of the potential of an ellipsoid may therefore be
expressed thus :—

5]

= @Iﬁzz—m SaAP L B2 20) )

where
1) 3 1
Z =2 2 22-1' 4

vl =0 £ Q0 ___ ‘ Qe o
20__(__1) o 0-1<922 20 £ 2 2 g?l 2 ZJ[2 +2

(i—o)(i—o—1) 2043 1 o o 4ros
+ 12 ‘)0+9‘)292 Srt=&e ). .. (39)
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§ 22. It may be observed that the symbolical form of the operator in the case of the
potential of a shell leads to a symbolical form for the potential of the ellipsoid, viz. :-—

M v (eV+eV)—eV4e V1
2 v? r

Now let there be a second solid ellipsoid of mass M"and of semi-axes ¢/, I/, ¢, and let
it be placed in a position where the coordinates of its centre referred to the axes of the
first ellipsoid are f, ¢, h, and its axes are inclined at direction cosines (I, m; n,),
(L, my ny), (I3 mg ng). Then if we put

where

d a d d
a = liggt gy g,

d d a d
@-—Zz@ﬂ'mg@'i' "o
d d d d
= Z:),d—f—}-m3 @-{-ngﬁ

a double application of the reasoning of §§ 16-18 leads us to the conclusion that the
exhaustion of the potential energy of the two ellipsoids due to mutual action is

Ve V)—eVteV gy(eVite V) —eVite Va1l (40)
v3 V13 P

vy VL
iMM

where 7 is the distance between their centres.
If we turn the second ellipsoid through an angle 86 about the line (A, u, ») passing
through its centre, we have

A =(vfm1—pn1)897|
Smy=(ny —1,)80 L . . .. L (4])
Oy = (ul, —-)\7??;1)80)'

with similar increments for the other direction cosines. Hence the expansion of (40)
in harmonics leads to an approximate determination of the forces and couples repre-
senting the mutual action between the two ellipsoids.

Tt is obvious that a similar investigation will apply to the determination of the forces
and couples between two magnets in the form of ellipsoids uniformly magnetised.

Tt may be interesting to notice that the foregoing method of expansion (36) shows
that for points at a considerable distance the potential due to a solid ellipsoid is the same
as if its mass were distributed as follows :—Two-fifths at the centre and one-tenth at
the extremities of each of the axes.
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General Remarks on Ellipsoidal Surface and Volume Integrals.

§ 23, We have found for the ellipsoid that
2
”VpdS:4w0tb0<1+§-!+ g .>V

”J‘dedydz— 47rabc< -I— 2 3, ce >V

where V is any function of =, 9, z whose differential coeflicients are finite at the
origin, It is obvious, therefore, that these two results lead to an infinite variety of
definite integrals. For example, let us use the second result in finding the value of
[[f*yPmmddydz, which is an integral evaluated by LAGRANGE in determining the
potential due to an ellipsoid (ToprUuNTERS ¢ History of the Theory of Attractions,
vol. ii, p. 158).

Putting i=I+m-+n, we find at once

' Aarabe 1! ap2mein d2 Jem gon
Sy = 20, 2m,2n
‘”'j‘ﬂo Yz dxdydz (294 3)2¢+ 1) I m! n! dﬂc dJ dzw Yz

1.35... (21— 1)135 . (@m—1)135 ... (2n—1)
1.35... (2l4+2m+2n+3)

—_ 47Ta2l+1b9m+162«n+1

If we suppose the function V such that it satisfies the equation

dx2+7)2dyg+9dz2 P 1)

then the surface volume integrals are the simplest possible in regard to results, but it
will depend upon some other condition attached to V what class of function we shall
have succeeded in integrating. For example, if V also satisfies the condition

av av . dVv
%oty ="
we should be led to a class of results similar to those obtained in the case of spherical
harmonics for the sphere, and, in fact, derivable from these by the theory of correspond-
ing points. As another example, let us suppose that V, besides satisfying equation
(42), also satisfies LAPLACE'S equation ; then one solution for V will be of the form

F(y/ b=+ /P —ay+/a* —b%)
We thus get
[[Fpas  =4mabeT (o)
(43)

[[[Fdudyd:= Amab b (o) JI |

3
MDCCCLXXIX. 3 G
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As a limiting case, let the ellipsoid wear down to the focal ellipse, and for the sake of
brevity let the semi-axes of that ellipse be denoted by fand g. We find

SS P‘(-ch_ﬂé@?alwdy=2quF(o> 7

1—2—Z |
A M .

I

If 4 ‘lj’z——_gg/—zF (i) dedy="7"F (0) ]

These results may be further simplified if the ellipse becomes a circle.

The Potential due to an Ellipse of uniform density.

§ 24. The integral
[e"“”*’gypds

taken round the perimeter of an ellipse of semi-axes a, b, is derivable from the corres-

ponding case of the circle of radius R by the theory of corresponding points, and the
result is

® 1 .
Zﬁabﬁm (Otzaz—i—bzﬁg)’ e e e e (45)
If we write herein af, b6, and recollect that pdf@=_05p, then
. j‘ e+ dady

taken over the area of the ellipse is equal to

j ne“*’@gdsdﬁ
the limits of # being from 0 to 1. The result of integrating this is

© ((,‘L%cg + 52'82)1:
2#&b§m(46)

Similar reasoning would give us
a? () ? oz+B;
P e

Confining our attention, however, to the result just found (46), we see that the
integration over the area of the ellipse of any function V of x, y, having finite differen-
tial coefficients at the origin, leads to
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<2cl2 bzd‘)ﬂ'
SSVdmdy 27rabz—-~fl~:—y—v N (V)

o 2%+ 4l o411

where, after the differentiations are performed, x, 7, z are to be put equal to zero.
If we suppose the ellipse coated with matter of unit density we thus get for the
potential at any outside point (f, ¢, &), sufficiently distant,

< 2,‘E+ bz@i)‘
SS dody —zmbz——~— !

V= + (g =g+ P Ll

)
¢ 2'22‘“‘1 ARRS TRV

1)i2:1 ) o
=t WH(AP b o B 20 ... ) . . (48)

Where A, ... B,, ... are the same as in § 21, provided we write f*=0a?— b? and ¢g*="0?
in the expansion of that article. We must have »>b and >/a*—0b%, if the above
expansion is convergent.

If a=b or f=0 the expansion just found reduces to the well known expansion for
a circular plate of uniform thickness, given in THOMSON and TA1T, p. 406.

(Added September 23, 1879.)

§ 25. The series given above for the potential of an ellipse may be thrown into the
form of an integral. Writing the result for the elliptic ring in the form

d?lil
277&62{ (CLZ bg)df 2;@} ;'

2% glq!

we see that this series is the part of the expansion not involving powers of % or its
reciprocal of

Bloded

2mrabe? \ e2lc< 5 )_
r

where ¢*=0a?—0% That is, the series is equal to

2n
abg eﬂz cos \p— —¢ sin \Jz lf dlll
0

3 ¢ 2
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Hence writing herein a6, b6, multiplying by %6 and integrating, we find for the
potential at (f; g, &) the expression

2 el
abSS ot eos v sin v gL N O

0 0

The expansion of the exponential leads of course to the series (48) given above, and
it is easy to find thereby the expressions for the action of an elliptic current on a
magnet placed at any distance from a coil outside a certain boundary. In like manner,
subject to a similar restriction, we might find, as in the case of two ellipsoids, the
action of one elliptic current on another. Within the boundary referred to, the
expressions we have obtained are no longer convergent, and in the case of the elliptic
current the potential in the neighbourhood of the centre of the circuit must be found
by an independent process.

The case of the circle, however, admits of a simple and complete determination.

Potential of Electric’ Currents in Circular Circuats.

§ 26. Reverting to the integral (a) let us put ¢=0; then the potential at (f] g, h)
due to a circle of unit density is given by

2m ]
V= @25 S /b cos 47'; %ﬁdﬁdlp
0

0
To integrate this in regard to 6 we observe first that

e 1
T T

j fordf=

Let us next consider the integral

ok cos Y

ﬁ ek eos ¥y, orf cos - ‘l’dlp

Integrating by parts we find
\:elc cos ¥ tam) ‘l‘jléw'l' J' QW,A':’_S},HQ_Q ek cos "bdlll jﬂ sin® ’\I’ ok cos \Pd,’b
o Yo

™

The first term becomes infinite when ¢=72—T and when $=-"; we may replace it by

{Qw sec’ Y. We thus find
Y0
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(Zr e + L )d —lrﬂ J: cos ¥l —'F" in2 Yk o8 ¥l
Jo \kcosyr Kcos®y ' K®cos? lll_]g 0 cos e Y=\ sn®ye Y

0

Combining these results, we find for the potential at (f; g, h) due to a circular plate
of unit density the expression

21r. X dl
aQJ’O sin® e cos ‘Pﬁ;dtp T (o))

If we move the origin to a point at distance v on the negative side of the axis of z,
we find

o™ —gia cos pin L
2a?| el cos ¥+ dk;dll’
0

. . . av . . .
in which form the expansion of - readily gives CLERK MAXWELL'S expansion for

the potential of unit current in the circle (‘ Electricity and Magnetism,” vol. ii., p. 301

(67)-

The result expressed by (b) may be written

2w sin? ,‘P\

o A2+ g+ (h+aj cos 1]r)2d¢

V= 0&2'(

Hence the potential due to unit current in the circle is

2 . a L
j‘o sin® t}lﬁ NP+ + (h+af cos ‘F)2d¢

—_—?

[ d 1
=ajL s 1}‘@ VI2+ g+ (h+aj cos \[r)2d‘p

[ aj cos
—."o VI + P+ (h+aj cos 1[r)2d¢

—ol" aj cos Y
_2-(0 f2+92+(k+ajcosq;)2dlp' T ©)

This result shows that the potential of a circular current is the same as that of an
imaginary bar in the axis of z joining the points whose distances from the origin are
oj and —ayj, the density at a point  being —2 cot . Now the integral (c) is true at
all points whose distances from the origin are greater than a. We can, however,
determine the corresponding result for points within the radius a by the ordinary
theory of inversion. We have seen that for points outside the radius a the potential
is the same as that of a bar joining two imaginary points. If z be the distance of any
“point of this bar from the origin and 2’ the corresponding inverted distance, we have
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a? .
v=_=— sec s

codR = —aqy sec § tan Ydis

a
_ aj cos
Hence the potential at all points inside the radius « is

and the corresponding density is —2 cot

™ a sec® Y
2-(0 f2+92+(h——ajseo\[r)2cwj Coe e e (d)

This result may also be proved from the consideration that the expression for the
magnetic force is continuous as we pass from one form of potential to the other.

§ 27. The results (c) and (d) give the mutual potential energy between two circular
currents placed in any positions whatever, in which the smaller circle is either wholly
outside or wholly inside the radius of the other. For the sake of simplicity we shall
suppose that the axes of the two currents intersect. Let the radius of the larger be
A and of the smaller a, and let u, v be the distances of their centres from the point of
intersection, the axes being inclined at an angle cos™ . Then, if unit current cir-
culates in each, and if the smaller circle lies wholly inside the sphere of radius A
containing the larger, the mutual potential energy is given by

_ w(m J €S ¢ sec "
M—4aA.“J0 v/ (w+Aj sec )+ (v+aj cos ¢ ) —2(u+ Aj sec §) (v-+aj cos 95)#0[(;565\#

If this series be expanded in harmonics

B,P,+BP,+ ... +BPA+ ...

we have

_ (7] cos ¢ sec? Yr(v+aj cos )"
B”——LlaAj J 0 (u+Aj sec )t Aoy

The series in the form of zonal harmonics is given by CLerk MAXwELL (¢ Electricity
and Magnetism,” vol. iL., p. 303).

On comparison with his series, since

™., . T dP,
L J cos ¢(u-tjv cos ¢)'dp=— L

when we take account of the above value of B, we deduce

J'f sec yrdyr

T (Z‘PZL
o(u+wjsec )yl n” du

true for integral values of n, from 1 upwards.
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If the smaller circle is wholly outside the sphere of radius A, the value of M given
above is inapplicable, and we ought to take a double application of the formula (c).

§ 28. In the important case of two coaxal circular currents, if b be the distance
between them, the mutual potential energy is given by

" j cos ¢ sec? 4
M= 4aAj[Ob+](Asecwp acosqb)(‘bll} Cee e ()

provided the sphere of radius A encloses the smaller circle.
Performing the integration in regard to ¥ we find

™ cos ¢(a cos d+bj)
on/ A?—(a cos ¢ +07)* ¢

M= 47764

With the view of simplifying this let us put a cos ¢+=A cos (z+yj), so that
@ cos p=A cos x cos yyj and —bj=A sinzsinyj. Thus x and y are not independent,
and by the substitution proposed it can readily be shown that M takes the form

cos® z sin dos
V/A? cost o — (@ + A*+ ) cos® w+a?

SWAQ[

the limits of integration being determined as follows:
When ¢=72T, ng, and when ¢=0, A? cos* x—(a®4 A?4-1?) cos® x+a®*=0.

The roots of the last equation are

Ag+a2+bg+\/(A2+a2+b2)2—4a2A2
2A?

A+ a2+ 02—/ (A?+aP+ %) —4a”A®
2A?

2 — 2 —
PP= cos® ,=

2— cog? 0. —
9*= cos? f,=

Since p is greater than unity we must take ¢ as the value of cos § when ¢=0.
Hence the value of M is

2 cos?  sin 2
8 dex
WAScos‘l A/ (p*— cos? 2)(g*— cos?® z)

. 21 cos? 0
——87rAqS W/ 00l0

=877A10{F<2%>—E<%>}. N 13

where F and E are complete elliptic integrals whose modulus is 1%
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If b be small and if A—a=c be also small, then approximately

P+ B+ &
p=1+4/A2 and g=1— G

AT
477A{log 8 Mb2+02_2}

This result is given by CLERK MAXWELL.
§ 29. If the circle of radius @ be outside the sphere of radius A passing through the

larger circuit, the value of M is

and M becomes

mr oS ¢ cos Jr
4:(1AJ'0."017 +j(A COS ¢+CL COos ‘#)d(bdllj . . . . . . . (g)

The forms (e) and (g) obtained for M are interesting from their simplicity, and would
seem to be useful in calculations connected with induction coils.



